1)

a)

b)

$$
\begin{aligned}
& \text { (A) } \mathrm{S} \\
& S^{v_{m-1}} \\
& \text { (B) } S \\
& \text { - (c) } s
\end{aligned}
$$

$$
\begin{aligned}
& s=\left(\frac{u+v}{2}\right) t \quad s=u t+\frac{1}{2} a t^{2} \quad s=\left(\frac{u+v}{2}\right) t \\
& S=\left(\frac{\theta+15}{2}\right) 3 \theta \\
& S=15(200)+\theta \\
& S=\left(\frac{15+\theta}{2}\right) 60 \\
& S=225 \mathrm{~m} \quad S=3000 \mathrm{~m} \quad S=450 \\
& |\overrightarrow{R S}|=3,675 \mathrm{~m}
\end{aligned}
$$

PhysicsAndMathsTutor.com
1)
c)

$$
\begin{aligned}
\overline{s p e e d} & =\frac{\text { distonce }}{\text { time }} \\
\bar{s} & =\frac{d}{t} \\
\bar{s} & =\frac{3675}{290} \\
\bar{s} & =12.7 \mathrm{~ms}^{-1} \quad(3 \mathrm{sf})
\end{aligned}
$$

2)

a)

$F=m a$

$$
2 i+3 j=\frac{1}{2} a \quad \therefore a=(4 i+6 j) \mathrm{ms}^{-2}
$$

b)

$$
\begin{aligned}
& V_{t}=4 i+\theta j+t(4 i+6 j \\
& v_{t}=(4+4 t) i+6 t j \\
&\left|v_{3}\right|=|4+12 i+18 j| \\
&\left|v_{3}\right|=\sqrt{16^{2}+18^{2}} \\
&\left|V_{3}\right|=\sqrt{58 \theta} \\
&=24.1 \mathrm{~ms}^{-1} \\
&(35 f)
\end{aligned}
$$

c)

$$
\begin{aligned}
V_{T} & =k(2 i+j) \\
2 K & =4+4 T \\
K & =6 T \\
\therefore 12 T & =4+4 T \\
8 T & =4 \quad
\end{aligned}
$$

PhysicsAndMathsTutor.com
4)
a)

moments avound $c \quad(\hat{\imath})=(\mathcal{T})$
i)

$$
\begin{aligned}
& \theta=2.5(-20 y)+4.5(\mathrm{~s}) \\
& 49 \theta=4.55 \\
& s=\frac{980}{9}
\end{aligned}
$$

$$
s=109 \quad(3 \mathrm{sp})
$$

$$
R+109=274.4
$$

ii)

$$
R=166 \mathrm{~N} \quad(3 \mathrm{sf})
$$

4)

b)

$$
R+2 R=2 \theta g+8 g
$$

moments around $A \quad(\hat{\imath})=(\mathcal{)}$

$$
\begin{aligned}
& \theta=1.5 R+4(-2 \theta g)+x(.8 g)+6(2 R) \\
& 80 g+8 x g=13.5 R \\
& 24 \theta g+24 x g=13.5(3 R) \\
& 24 \theta g+24 x g=13.5(28 g) \\
& 24 \theta+24 x=378 \\
& 24 x=138 \\
& x=5.75 \mathrm{~m}
\end{aligned}
$$

c)

The weight of the package acts directly on the point stated (C or E)

The question states the speed of both particles is $2 u$, but only mentions the direction of this speed for Q, leaving P's velocity ambiguous. The 2 values of K are for when P is moving towards $Q(k=4 / 3)$ and away form $Q(20 / 3)$

PhysicsAndMathsTutor.com

$$
\begin{aligned}
& \text { 6) } \mu=0.3 \\
& R=4 y \cos \left(30^{\circ}\right) \quad F_{\text {max }}=\mu R \\
& =\frac{48 \sqrt{3}}{5} \quad=0.3 \frac{98 \sqrt{3}}{5} \\
& =10.2 \mathrm{~N}_{3 \mathrm{sf}} \\
& \omega(L)=4 y \sin \left(30^{\circ}\right) \\
& =19.6 \mathrm{~N} \\
& 19.6-10.2=9.42 N_{(3 \mathrm{sf})} \\
& F=m a \\
& 9.42=4 a \quad \therefore a=2.35 \mathrm{~ms}^{-2} \\
& S 5 m \quad v^{2}=u^{2}+2 a s \\
& u \theta_{-5} \\
& v \quad v^{2}=0+23.5 \\
& \text { A } 2.35-5^{-2} \quad|V|=4.85 \mathrm{mi} \text { (} 3 \mathrm{sf} \text {) } \\
& T x
\end{aligned}
$$

PhysicsAndMathsTutor.com
6)
b)

$$
\begin{aligned}
R & =4 g \cos \left(30^{\circ}\right)+H \sin \left(30^{\circ}\right) \\
F_{\max } & =0.3\left[33.9+\frac{1}{2} H\right] \\
& =1 \theta .2+\frac{3}{2 \theta} H
\end{aligned}
$$

$H \cos (3 \theta)-4 y \sin \left(3 \theta^{\circ}\right)-F_{\max }=\theta$
Forces perpendicular to R

$$
\frac{\sqrt{3}}{2} H-2 g-1 \theta \cdot 2-\frac{3}{2 \theta} H=\theta
$$

$10 \sqrt{3} H-3 H=545.7$

$$
H(10 \sqrt{3}-3)=545.7
$$

$$
H=41.6 \mathrm{~N}
$$

PhysicsAndMathsTutor.com
7)

a)

$$
\begin{aligned}
P: T-3 y & =3 a \\
33.6-29.4 & =3 a \\
4 \cdot 2 & =3 a \\
a & =1.4 \mathrm{~ms}^{-2}
\end{aligned}
$$

b)

Q:

$$
\begin{aligned}
m g-T & =m a \\
4.8 m-33.6 & =1.4 m \\
8.4 m & =33.6 \\
m & =4 \mathrm{ky}
\end{aligned}
$$

C)
Q

$$
\begin{array}{ll}
S 1 \theta .5 m & s=u t+\frac{1}{2} a t^{2} \\
U \theta_{m s^{-1}} & 1 \theta .5=\theta+\theta .7 t^{2} \\
V x & t^{2}=15 \\
A 1.4 \mathrm{~ms}^{-2} & t= \pm \sqrt{15} \\
T- & t>\theta \therefore t=3.87(3 \mathrm{sf})
\end{array}
$$

7)

d)

$$
\begin{array}{ll}
S 10.5 m & v^{2}=u^{2}+20.5 \\
U \theta & v^{2}=\theta^{2}+29.4 \\
V- & v=5.42 \mathrm{mi}^{-1} \\
A 1.4 \mathrm{~ms}^{-2} & \\
T X &
\end{array}
$$

$$
\begin{array}{lc}
S \times & V=u+a t \\
U 5.42 \mathrm{~ms}^{-1} & \theta=5.42-9.8 t \\
V \theta_{\mathrm{ms}} \mathrm{~s}^{-1} & 4.8 t=5.42 \\
A-9.8 \mathrm{~s}^{-2} & t=0.553 \mathrm{~s} \\
T- & \\
T- & \\
T_{2}=3.87+\theta .553=4.43 \mathrm{~s}
\end{array}
$$

e)

